Архив рубрики: Новости

Астроновости

Космический мусор: чем орбитальные обломки грозят будущему космических полётов

1f4ea8f559dbПо прошествии 50 лет, минувших со дня начала освоения космоса человеком, полезные орбиты вокруг Земли оказались усеянными брошенными спутниками, использованными ступенями ракет, выброшенным в космос мусором и другими обломками. В сентябре 2012 г. американская сеть Space Surveillance Network насчитала на орбитах примерно 23000 объектов, размер которых превышает 5-10 сантиметров. На основе этих данных было подсчитано, что на околоземных орбитах находится в общей сложности около 750000 объектов, размеры которых превышают 1 сантиметр.

Большая часть из зарегистрированных объектов (65 процентов) появилась в результате испытаний китайской антиспутниковой системы в 2007 г., а также в результате случайного столкновения двух спутников в 2009 г. Когда объекты, находящиеся на разных орбитах, встречаются друг с другом, столкновение происходит на скорости, составляющей тысячи километров в час.

Столкновение на орбитальных скоростях даже с крохотным обломком может иметь разрушительные последствия. Пуля диаметром в 1,2 сантиметра, набравшая скорость в 6,8 километра в секунду, входит в алюминиевый блок толщиной в 18 сантиметров почти на половину его толщины.

Обшивка космического корабля и корпуса ракет намного тоньше, чем этот блок. Частица диаметром в 10 сантиметров, врезающаяся в космический аппарат, вполне вероятно, приведёт к его разрушению.

Впервые предложенный учёным НАСА Дональдом Кесслером в 1978 г. Синдром Кесслера представляет собой последовательную цепочку столкновений, которые приведут к тому, что орбитальное пространство станет вскоре абсолютно непроходимым. Закономерно предположить, что в ряде случаев столкновение с обломками разобьёт космический аппарат на ещё большее число обломков. Некоторые из этих новых обломков врежутся в другой космический аппарат, с которым произойдёт та же история, и в конечном итоге будет иметь место нечто, напоминающее эффект домино. Низкая околоземная орбита станет слишком опасной для того, чтобы по ней могли путешествовать орбитальные спутники или космические аппараты, пилотируемые людьми.

В 2013 г. самым опасным космическим обломком на орбите являлся неисправный спутник ENVISAT . Связь с ним была утеряна в апреле 2012 г. 26-метровый брошенный спутник продолжал оставаться на орбите, где другие космические объекты приближались к нему каждый год на расстояния, иногда составляющие меньше 200 метров. Столкновение с этим спутником могло бы вызвать цепочку разрушительных столкновений других орбитальных обломков между собой. Ожидается, что ENVISAT будет оставаться на орбите на протяжении примерно 150 лет, по истечении которых он вернётся обратно в атмосферу Земли и благополучно сгорит в ней.

На протяжении многих лет разрабатывались планы по созданию различных средств для удаления космических обломков с околоземных орбит. Среди предлагавшихся пилотируемых миссий можно отметить проекты Phoenix американского военного агентства DARPA, CleanSpace One швейцарского Swiss École Polytechnique Fédérale de Lausanne (EPFL), представляющие собой космические аппараты специальной конструкции, предназначенные для захвата орбитального мусора и его дальнейшего уничтожения или адаптации к использованию в новых космических проектах. Также довольно любопытны проекты наземных лазеров, способных снижать до безопасного уровня скорость движения орбитальных обломков.

allfons.ru-9954

Сатурн, шестая по счёту планета от Солнца, является одним из наиболее легко наблюдаемых объектов для астрономов, во многом благодаря его обширной и весьма специфической системе колец. Кольца Сатурна восхищали астрономов-любителей на протяжении столетий, начиная с того времени, когда люди впервые начали вглядываться в небо через окуляр телескопа.

Когда Галилео Галилей впервые наблюдал Сатурн в 1610 г., он подумал, что эти кольца представляли собой гигантские спутники планеты, находившиеся по разные стороны от неё. Однако дальнейшие наблюдения, проводившиеся учёным в течение нескольких последующих лет, показали, что эти кольца меняли свою форму и даже исчезали полностью, по мере того как менялся их наклон по отношению к Земле.

В настоящее время мы знаем, что Галилео наблюдал «пересечение плоскости колец». Экватор Сатурна наклонён по отношению к орбите этой планеты вокруг Солнца под углом примерно в 27 градусов (аналогичный угол наклона для Земли составляет 23 градуса). Когда Сатурн обращается вокруг Солнца, то сначала одно, а затем и второе полушария по очереди освещаются Солнцем. Этот наклон отвечает за смену сезонов, так же как и в случае с Землёй, и когда на Сатурне наступает осеннее или весеннее равноденствие, то Солнце попадает в плоскость системы колец, в которой лежит также и экватор планеты. Солнечные лучи освещают кольца «с ребра», и тонкую полоску колец становится трудно различить при помощи телескопов. Кольца Сатурна очень широкие – они достигают 273600 километров в поперечнике – но толщина их составляет не более 10 метров.

В 1655 г. астроном Кристиан Гюйгенс предположил, что эти странные тела были твёрдыми, наклонёнными кольцами, и в 1660 г. другой астроном предположил, что эти кольца состояли из небольших спутников – догадка, которая не могла получить подтверждения в течение почти 200 последующих лет.

В эпоху освоения космоса зонд «Пионер-11» прошёл сквозь плоскость колец Сатурна в 1979 г. В 1980-е гг. космические аппараты «Вояджер-1» и «Вояджер-2» позволили взглянуть на систему колец гигантской планеты.

В 2004 г. миссия НАСА «Кассини-Гюйгенс» впервые в мире вышла на орбиту вокруг Сатурна и произвела подробные наблюдения не только самой планеты, но и её системы колец.

Состав и структура

Кольца Сатурна состоят из миллиардов частиц, размеры которых колеблются от нескольких миллиметров до десятка километров. Состоящие преимущественно из водяного льда, эти кольца также втягивают в свою систему каменистые метеороиды, движущиеся сквозь космическое пространство.

Хотя начинающему астроному-любителю может показаться, что Сатурн опоясан единым, твёрдым кольцом, но на самом деле система колец разделена на несколько частей. Эти кольца получили свои названия по алфавиту в соответствии с датами их открытия. Таким образом, главные кольца, если двигаться от периферии системы к центру, называются соответственно A, B и С. Щель шириной в 4700 километров, известная как Щель Кассини, разделяет между собой кольца A и B.

Другие, более тусклые кольца открывались по мере того, как совершенствовались технологии изготовления телескопов. «Вояджер-1» обнаружил самое близкое к центру системы кольцо D в 1980 г. Рядом с кольцом А, охватывая его снаружи, находится кольцо F, которое, в свою очередь, охватывается кольцами G и E, лежащими на значительном удалении от остальных колец системы.

Сами кольца содержат значительное число щелей и структур. Некоторые из них созданы многочисленными небольшими спутниками Сатурна, в то время как природа других из них до сих пор продолжает ставить в тупик астрономов.

Сатурн не единственная планета Солнечной системы, имеющая кольца – Юпитер, Уран и Нептун также располагают тусклыми системами колец – но со своими спутниками, система которых простирается на три четверти расстояния от Земли до Луны (282000 километров), он, без сомнения, формирует наиболее впечатляющую и доступную для наблюдения систему колец в Солнечной системе.

Сакура, выросшая из космической косточки, расцвела на шесть лет раньше срока

5758Вишневое дерево, выросшее из косточки, которая в течение восьми месяцев находилась на орбите Земли, расцвело на несколько лет раньше, чем обычно, причем необычными цветами.

Молодое вишневое деревце, которому всего четыре года, выросшее из косточки, которая в течение восьми месяцев находилась на борту Международной Космической Станции, расцвело 1 апреля, примерно на шесть лет раньше положенного природой срока.

Чудо-деревце выросло из одной из 265 косточек сакуры, выбранных для участия в проекте, в рамках которого семена различных видов вишневых деревьев собирали из 14 различных областей Японии для проведения космического эксперимента.

Эти косточки в ноябре 2008 года отправили на МКС, обратно на Землю они вернулись в июле 2009 года, сделав 4100 оборотов вокруг Земли, — вместе с Японским астронавтом Коичи Вакатой (Koichi Wakata).

Некоторые из них были отправлены для проведения тестов в лабораторию, однако большая часть вернулась в родные места, где их посадили.

К апрелю этого года «космическое вишневое дерево», посаженное возле буддистского храма Ganjoji выросло до четырех метров в высоту и внезапно выпустило девять бутонов. У распустившихся цветов было всего по пять лепестков (для сравнения: у дерева, от которого взяли эту косточку, каждый цветок имеет около 30 лепестков).

Обычно дерево этой разновидности выпускает бутоны лишь через 10 лет.

Следует отметить, что сакура, посаженная возле храма Ganjoji, — не единственное раннецветущее космическое вишневое дерево: цветы были замечены еще на четырех молодых деревцах.

Ученые предположили, от чего зависит изменение скорости вращения пульсаров

5755Пульсары – невероятно плотные останки сверхновых, которые очень быстро вращаются вокруг собственной оси – могут изменять свою скорость в зависимости от активности миллиардов вихревых потоков жидкости, которая находится под их поверхностью. Об этом говорят результаты нового исследования.

Работа ученых основана на объединении исследований и моделирования, свою теорию они проверили на пульсаре туманности Краб, которые периодически замедляет свое вращение на как минимум 0,0055 наносекунд. Случайным образом Краб и другие пульсары ускоряются, такое событие в астрономии называется “glitch” – внезапное изменение периода вращения пульсара. Благодаря Обсерватории Jodrell Bank, которая вела наблюдения за пульсаром почти ежедневно в течение последних 29 дней, у ученых имеется большое количество данных об этом пульсаре.

Астрономы утверждают, что причиной изменения периода вращения пульсара является “открепление и перемещение вихревых потоков, которые соединяют ядро пульсара со смесью частиц, содержащих нейтроны сверхтекучей жидкости под его корой”.

“Удивительно, что до этого никто не пытался определить нижний предел изменения периода вращения. Интересно, что самый маленький «glitch» намного больше, чем мы могли ожидать”, — утверждает Данаи Антонополу (Danai Antonopoulou) из Университета Амстердама.

Ученые разглядели на снимках Cassini образование новой луны Сатурна

5753
Ученые разглядели на снимках Cassini образование новой луны Сатурна

Космический аппарат NASA Cassini (Кассини) документально зафиксировал формирование небольшого ледяного объекта внутри колец Сатурна. Ученые предполагают, что этот объект может быть новой луной, и рассчитывают с его помощью больше узнать об образовании известных спутников планеты.

Снимки, сделанные узкоугольной камерой Cassini 15 апреля 2013 года, показывают возмущения на самом краю внешнего кольца A. Одно из этих возмущений выглядит как арка или дуга, яркость которой приблизительно на 20 процентов превышает яркость ее окружения. Длина арки – 1200 километров, а ширина – 6 километров. Ученые так же обнаружили необычные выпуклости на обычно гладком поперечном сечении кольца. По мнению ученых, эта арка и выпуклости появились в результате гравитационного влияния некоего близлежащего объекта. Подробности этих наблюдений были опубликованы вчера ,14 апреля, в журнале Icarus.

Ученые считают, что объект не должен увеличиваться в размерах, и даже, возможно, распадется на части. Однако процесс его формирования и движения от планеты помогает ученым понять, как ледяные луны Сатурна, в том числе Титан и Энцелад, могли много лет назад сформироваться внутри более массивных колец. Кроме того, возможно, благодаря этому объекту мы можем больше узнать о том, как Земля и другие планеты нашей Солнечной Системы могли сформироваться и мигрировать от нашей звезды – Солнца.

Объект, который получил неофициальное прозвище – Peggy (Пегги), — слишком мал для того, чтобы его сейчас можно было увидеть на снимках. По предварительным оценкам, его диаметр – чуть менее километра. Размер спутников Сатурна связан с их удаленностью от планеты, — чем дальше от планеты – тем больше. Кроме того, многие спутники состоят в основном изо льда, как и частицы, из которых состоят кольца Сатурна. Основываясь на этих и других фактах, ученые предположили, что ледяные спутники сформировались из вещества колец, а потом мигрировали от планеты, присоединившись к остальным лунам.

Состав солнечной системы

Из курса природоведения вы знаете, что Солнечную систему составляют Солнце и планеты с их спутниками, что звезды расположены от нас несравнимо дальше, чем планеты Самая далекая из известных планет — Плутон отстоит от Земли почти в 40 раз дальше, чем Солнце. Но даже ближайшая к Солнцу звезда отстоит от нас еще в 7000 раз дальше. Это огромное различие расстояний до планет и звезд надо отчетливо осознать.

Девять больших планет обращаются вокруг Солнца по эллипсам (мало отличающимся от окружностей) почти в одной плоскости. В порядке удаления от Солнца — это Меркурий, Венера, Земля (с Луной), Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Между Марсом и Юпитером обращается множество астероидов (малых планет, названных так за их звездообразный вид в телескоп).

Число уже известных астероидов более 2000. Вокруг Солнца обращаются также кометы — большие образования из разреженного газа с очень малым твердым ядром. Большинство из них имеет эллиптические орбиты, выходящие за орбиту Плутона, так что диаметр последней лишь условно принимается за диаметр Солнечной системы. Кроме этого, вокруг Солнца обращаются по эллипсам бесчисленные метеорные тела размером от песчинки до мелкого астероида. Вместе с астероидами и кометами они относятся к малым телам Солнечной системы. Пространство между планетами заполнено крайне разреженным газом и космической пылью. Его пронизывают электромагнитные излучения; оно носитель магнитных и гравитационных полей.

Солнце в 109 раз больше Земли по диаметру и примерно в 333 000 раз массивнее Земли. Масса всех планет составляет всего лишь около 0,1% от массы Солнца, поэтому оно силой своего притяжения управляет движением всех членов Солнечной системы.

MGZ9EZmbglI

Болиды и метеориты

Болидом называется довольно редкое явление — летящий по небу огненный шар. Это явление вызывается вторжением в плотные слои атмосферы крупных метеорных тел, окруженных обширной оболочкой раскаленных газов и частиц, образующихся при нагревании вследствие торможения в атмосфере. Болиды часто имеют заметный угловой диаметр в 0.1—0.5 видимого диаметра Луны и бывают видны даже днем. Суеверные люди принимали такие огненные шары за летящих драконов с огнедышащей пастью. От сильного сопротивления воздуха метеорное тело нередко раскалывается и с грохотом выпадает на Землю в виде осколков. Упавшее на Землю тело называется метеоритом.

Метеорит, имеющий небольшие размеры, иногда целиком испаряется в атмосфере Земли. В большинстве случаев масса метеорита за время полета сильно уменьшается. До Земли долетают лишь остатки метеорита, обычно успевающие остыть, когда космическая скорость его уже погашена сопротивлением воздуха. Иногда выпадает целый метеоритный дождь. При полете метеориты оплавляются и покрываются черной корочкой. Один такой «черный камень» в Мекке вделан в стену храма и служит предметом религиозного поклонения.

Бывает три вида метеоритов: каменные, железные и железо-каменные. Иногда метеориты находят через много лет после их падения. Особенно много находят железных метеоритов. В СССР метеорит — собственность государства и подлежит сдаче в музеи для изучения. По содержанию радиоактивных элементов и свинца определяют возраст метеоритов. Он различен, но самые старые метеориты имеют возраст 4,5 млрд. лет.

Некоторые наиболее крупные метеориты при большой скорости падения взрываются и образуют метеоритные кратеры, напоминающие лунные. Самый большой кратер из хорошо изученных находится в Аризоне (США) . Его диаметр 1200 м и глубина 200 м.

Этот кратер возник, по-видимому, около 5000 лет назад. Найдены следы еще больших и более древних метеоритных кратеров. Все метеориты — это члены Солнечной системы.

Судя по тому, что число астероидов растет с уменьшением их размеров, и по тому, что открыто уже много мелких астероидов, пересекающих орбиту Марса, можно думать, что метеориты — это очень мелкие астероиды с орбитами, пересекающими орбиту Земли. Структура некоторых метеоритов

Свидетельствует о том, что они подвергались высоким температурам и давлениям и, следовательно, могли существовать в недрах разрушившейся планеты или крупного астероида.

Метеориты содержат только известные на Земле химические элементы что снова показывает материальное единство Вселенной. Соединения, входящие в состав метеоритов, отличаются от земных пород и дают сведения о начальном этапе формирования планет Солнечной системы.

o-9o5knkYeU

 

U7dE0UC_APU
Аризонский метеоритный кратер.

информация из ресурса: http://vk.com/astronomy_school

Астрономические события апреля 2014 года

В апреле СОЛНЦЕ перемещается по созвездиям Рыб и Овна. Продолжительность светового дня на широте Москвы в начале месяца – 13 часов 07 минут, в конце – 15 часов 23 минуты.

Фазы ЛУНЫ:  первая четверть – 7 апреля, полнолуние – 15 апреля, последняя четверть – 22 апреля, новолуние — 29 апреля.

МЕРКУРИЙ быстро перемещается в прямом направлении по созвездиям Водолея, Рыб и Овна. 26 апреля планета вступает в соединение с Солнцем и весь месяц недоступна для наблюдений.

ВЕНЕРА движется в прямом направлении по созвездиям Козерога, Водолея и Рыб. 23 марта планета миновала наибольшую западную элонгацию и в апреле видна по утрам на фоне зари низко над юго-восточным горизонтом. Блеск планеты -4,2m, угловой диаметр уменьшается от 23 до 17”, фаза увеличивается от 0,54 до 0,66. В телескоп диск планеты выглядит как овал.

МАРС движется попятно по созвездию Девы. 9 апреля – противостояние планеты. В апреле Марс отлично виден всю ночь: вечером появляется над юго-восточным горизонтом, к рассвету перемещается в юго-западную часть неба. Блеск планеты достигает -1,5m, угловой диаметр 15”.

ЮПИТЕР в 2014 году перемещается по созвездию Близнецов. В апреле по вечерам планета появляется высоко на юге и после полуночи заходит на северо-западе. Блеск Юпитера -2,1m, угловой диаметр 37”. В небольшой телескоп можно наблюдать четыре главных спутника планеты.

САТУРН в 2014 году находится в созвездии  Весов. В апреле планета движется попятно, восходит в начале ночи и к рассвету перемещается в юго-западную часть неба. Блеск Сатурна 0,2m, угловой диаметр 18”. В любительский телескоп можно наблюдать кольцо вокруг планеты и её главный спутник Титан.

Метеорный поток ЛИРИДЫ активен с 16 по 25 апреля. В максимуме, 22 апреля, можно наблюдать в среднем 10 метеоров в час.

Полное лунное затмение 15 апреля будет наблюдаться в западном полушарии.

Кольцеобразное солнечное затмение 29 апреля будет наблюдаться в Антарктике.

По материалам «Школьного астрономического календаря»

Солнце онлайн и солнечная активность. 2 апреля 2014

Солнечная активность ограничилась примерно десятком вспышек класса C низкого уровня. Большинство из них возникло в регионе 2026. Наиболее сильная вспышка — C3.5 достигла максимума в 6:08 UT 2 апреля. Другие вспышки возникли в регионах 2022 , 2027 и 2029 .
Извержение солнечной нити, расположенной на юго-востоке, в регионе 2021, вызвало слабый выброс корональной массы типа гало, замеченный инструментами LASCO COR 2 1 апреля 16:48 UT. Основная часть выброса была направлена на восток. Прогнозируемая скорость выброса составляет 300 км/с. Таким образом, прибытие волны от него и, как следствие, возмущения магнитосферы Земли можно ожидать в промежутке между 4 и 6 апреля.
За этим выбросом последовал еще один, типа частичного гало в 19:00 UT, 1 апреля. Его угловая ширина, по оценкам, около 160 градусов, направление движения вещества — юго-запад. Выброс связан с обратной стороной звезды и не является геоэффективным.
В настоящее время скорость солнечного ветра варьируется между 400 и 450 км/с.
Нет никаких признаков предполагаемого прибытия вещества от выбросов от 28, 29 и 30 марта. Нестабильные условия магнитосферы, а также незначительную магнитную бурю еще можно ожидать в течение ближайших дней.

Оборудование: Coronado 90 + LX75 + Imaging Source DMK
Обработка: PS, Avistack 300
Дата: 02.04.14
Время по МСК: 13:00
Выдержка 1/150 сек.

Обсерватория SPONLI

IDL TIFF file IDL TIFF file IDL TIFF file IDL TIFF file

Буран (космический корабль)

Материал из Википедии — свободной энциклопедии
У этого термина существуют и другие значения, см. Буран (значения).
Буран
Буран
Старт комплекса «Энергия — Буран» 15 ноября 1988 года с космодрома Байконур
Общие сведения
Страна Союз Советских Социалистических Республик СССР
Назначение Многоразовый транспортный космический корабль
Разработчик НПО «Молния»
Изготовитель Тушинский машиностроительный завод
Основные характеристики
Количество ступеней 2
Длина 36,4 м
Диаметр
Стартовая масса 105 т
История запусков
Состояние программа остановлена
Места запуска аэродром «Юбилейный»,Байконур
Число запусков 1
  — успешных 1
  — неудачных 0
  — частично неудачных 0
Первый запуск 15 ноября 1988 года

«Буран» — орбитальный корабль-космоплан советской многоразовой транспортной космической системы (МТКК), созданный в рамках программы «Энергия — Буран». Один из двух реализованных в мире орбитальных кораблей МТКК, «Буран» был ответом на аналогичный американский проект «Спейс шаттл». Свой первый и единственный космический полёт «Буран» совершил в беспилотном режиме 15 ноября 1988 года. Ведущий разработчик МТКК «Буран» — Глеб Евге́ньевич Лози́но-Лози́нский.

История[править | править исходный текст]

На авиасалоне в Ле-Бурже, 1989 год

Ан-225 и «Буран»…

«Буран» задумывался как военная система [1] , которая, впрочем, была ответом на планировавшееся применение в военных целях американских шаттлов.[2] Тактико-техническое задание на разработку многоразовой космической системы выдано Главным управлением космических средств Министерства обороны СССР и утверждено Д. Ф. Устиновым 8 ноября 1976 года. «Буран» предназначался для:

  • комплексного противодействия мероприятиям вероятного противника по расширению использования космического пространства в военных целях;
  • решения целевых задач в интересах обороны, народного хозяйства и науки;
  • проведения военно-прикладных исследований и экспериментов в обеспечение создания больших космических систем с использованием оружия на известных и новых физических принципах;
  • выведения на орбиты, обслуживание на них и возвращение на землю космических аппаратов, космонавтов и грузов.[3]

Программа имеет свою предысторию:[4]

В 1972 г. Никсон объявил, что в США начинает разрабатываться программа «Space Shuttle». Она была объявлена как национальная, рассчитанная на 60 пусков челнока в год, предполагалось создать 4 таких корабля; затраты на программу планировались в 5 миллиардов 150 миллионов долларов в ценах 1971г.

Челнок выводил на околоземную орбиту 29,5 т и мог спускать с орбиты груз до 14,5 т. Это очень серьезно, и мы начали изучать, для каких целей он создается? Ведь все было очень необычно: вес, выводимый на орбиту при помощи одноразовых носителей в Америке, даже не достигал 150 т/год, а тут задумывалось в 12 раз больше; ничего с орбиты не спускалось, а тут предполагалось возвращать 820 т/год… Это была не просто программа создания какой-то космической системы под девизом снижения затрат на транспортные расходы (наши, нашего института проработки показали, что никакого снижения фактически не будет наблюдаться), она имела явное целевое военное назначение.

— Директор Центрального НИИ машиностроения Ю. А. Мозжорин

Чертежи и фотографии шаттла были впервые получены в СССР по линии ГРУ в начале 1975 года. Сразу же были проведены две экспертизы на военную составляющую: в военных НИИ и в Институте проблем механики под руководством Мстислава Келдыша. Выводы: «будущий корабль многоразового использования сможет нести ядерные боеприпасы и атаковать ими территорию СССР практически из любой точки околоземного космического пространства» и «Американский шаттл грузоподъемностью 30 тонн в случае его загрузки ядерными боеголовками способен совершать полеты вне зоны радиовидимости отечественной системы предупреждения о ракетном нападении. Совершив аэродинамический манёвр, например, над Гвинейским заливом, он может выпустить их по территории СССР» — подтолкнули руководство СССР к созданию ответа — «Бурана».[5]

И говорят, что мы будем туда летать раз в неделю, понимаете… А целей и грузов нет, и сразу возникает опасение, что они создают корабль под какие-то будущие задачи, про которые мы не знаем. Возможно применение военное? Безусловно.

— Вадим Лукашевич — историк космонавтики, кандидат технических наук[5]

И вот они это продемонстрировали на том, что над Кремлём они прошлись на «Шаттле», вот это был всплеск наших военных, политиков, и так было принято решение в одно время: отработка методики перехвата космических целей, высоких, с помощью самолётов.

— Магомед Толбоев, Герой России Заслуженный летчик-испытатель РФ[5]

К 1 декабря 1988 года был по крайней мере один секретный запуск шаттла по линии военных (номер полета по кодификации НАСА — STS-27).[6]

В Америке заявили, что система «Спейс шаттл» создавалась в рамках программы гражданской организации — НАСА. Целевая космическая группа под руководством вице-президентаС. Агню в 1969—1970 годах разработала несколько вариантов перспективных программ мирного освоения космического пространства после окончания лунной программы.[7] В 1972 году Конгресс, основываясь на экономическом анализе?[8] поддержал проект создания многоразовых челноков взамен одноразовых ракет. Программа «Спейс шаттл» была закрыта 21 июля 2011г, в том числе и из-за нерентабельности, так как стоимость каждого полёта «Спейс шаттл» составляла от 450 до 600 млн долларов.

В СССР, как и в США, многие космические программы имели либо военное назначение, либо строились на военных технологиях. Так, ракета-носитель Союз — это знаменитая королёвская «семёрка» — межконтинентальная баллистическая ракета (МБР) Р-7, а ракета-носитель Протон — это МБР УР-500.

По сложившимся в СССР порядкам принятия решений о ракетно-космической технике и по самим космическим программам, инициаторами разработок могли быть либо высшее партийное руководство («Лунная программа»), либо Министерство Обороны.

В апреле 1973 года в ВПК с привлечением головных институтов (ЦНИИМАШ, НИИТП, ЦАГИ, ВИАМ, 50 ЦНИИ, 30 ЦНИИ) был разработан и разослан на рассмотрение и согласование в МОМ, МАП и МО СССР и ряд других смежных министерств проект Решения ВПК по проблемам, связанным с созданием многоразовой космической системы. В правительственном Постановлении № П137/VII от 17 мая 1973 года, помимо организационных вопросов, содержался пункт, обязывающий «министра С. А. Афанасьева и В. П. Глушко подготовить в четырёхмесячный срок предложения о плане дальнейших работ».

Многоразовые космические системы имели в СССР как сильных сторонников, так и авторитетных противников. Желая окончательно определиться с МКС, ГУКОС решил выбрать авторитетного арбитра в споре военных с промышленностью, поручив головному институту Минобороны по военному космосу (ЦНИИ 50) провести научно-исследовательскую работу (НИР) по обоснованию необходимости МКС для решения задач по обороноспособности страны. Но и это не внесло ясности, так как генерал Мельников, руководивший этим институтом, решив подстраховаться, выпустил два «отчёта»: один — в пользу создания МКС, другой — против. В конце концов оба этих отчёта, обросшие многочисленными авторитетными «Согласовано» и «Утверждаю», встретились в самом неподходящем месте — на столе Д. Ф. Устинова. Раздражённый результатами «арбитража», Устинов позвонил Глушко и попросил ввести его в курс дела, представив подробную информацию по вариантам МКС, но Глушко неожиданно отправил на встречу с секретарём ЦК КПСС, кандидатом в члены Политбюро, вместо себя Генерального конструктора — своего сотрудника, и. о. начальника 162 отдела Валерия Бурдакова.

Приехав в кабинет Устинова на Старой площади, Бурдаков стал отвечать на вопросы секретаря ЦК. Устинова интересовали все подробности: зачем нужна МКС, какой она может быть, что нам для этого нужно, зачем в США создают свой шаттл, чем это нам грозит. Как впоследствии вспоминал Валерий Павлович, Устинова интересовали в первую очередь военные возможности МКС, и он представил Д. Ф. Устинову своё видение использования орбитальных челноков как возможных носителей термоядерного оружия, которые могут базироваться на постоянных военных орбитальных станциях в немедленной готовности к нанесению сокрушительного удара в любой точке планеты[9].

Перспективы МКС, представленные Бурдаковым, настолько глубоко взволновали и заинтересовали Д. Ф. Устинова, что он в кратчайший срок подготовил решение, которое было обсуждено в Политбюро, утверждено и подписано Л. И. Брежневым[10][11], а тема многоразовой космической системы получила максимальный приоритет среди всех космических программ в партийно-государственном руководстве и ВПК.

В 1976 году головным разработчиком корабля стало специально созданное НПО «Молния». Новое объединение возглавил Глеб Евгеньевич Лозино-Лозинский, уже в 1960-е годыработавший над проектом многоразовой авиационно-космической системы «Спираль».

Производство орбитальных кораблей осуществлялось на Тушинском машиностроительном заводе с 1980 года; к 1984 году был готов первый полномасштабный экземпляр. С завода корабли доставлялись водным транспортом (на барже под тентом) в город Жуковский, а оттуда (с аэродрома Жуковский) — воздушным транспортом (на специальном самолёте-транспортировщике ВМ-Т) — на аэродром «Юбилейный» космодрома Байконур.

Для посадок космоплана «Буран» была специально оборудована усиленная взлётно-посадочная полоса (ВПП) на аэродроме «Юбилейный» на Байконуре. Кроме того, были серьёзно реконструированы и полностью дооснащены необходимой инфраструктурой ещё два основных резервных места приземления «Бурана» — военные аэродромы Багерово в Крыму иВосточный (Хороль) в Приморье, а также построены или усилены ВПП ещё в четырнадцати запасных местах посадки, в том числе вне территории СССР (на Кубе, в Ливии).

Полноразмерный аналог «Бурана», имевший обозначение БТС-002(ГЛИ), был изготовлен для лётных испытаний в атмосфере Земли. В его хвостовой части стояли четыретурбореактивных двигателя, позволявшие ему взлетать с обычного аэродрома. В 1985—1988 годах его использовали в ЛИИ им. М. М. Громова (город Жуковский, Московская область) для отработки системы управления и системы автоматической посадки, а также для подготовки лётчиков-испытателей перед полётами в космос.

10 ноября 1985 года в ЛИИ имени Громова Минавиапрома СССР совершил первый атмосферный полёт полноразмерный аналог «Бурана» (машина 002 ГЛИ — горизонтальные лётные испытания). Пилотировали машину лётчики-испытатели ЛИИ Игорь Петрович Волк и Р. А. Станкявичус.

Ранее приказом Минавиапрома СССР от 23 июня 1981 года № 263 был создан Отраслевой отряд космонавтов-испытателей Минавиапрома СССР в составе: Волк И. П., Левченко А. С., Станкявичус Р. А. и Щукин А. В. (первый набор).

Первый и единственный полёт[править | править исходный текст]

Свой первый и единственный космический полёт «Буран» совершил 15 ноября 1988 года. Космический корабль был запущен с космодрома Байконур при помощи ракеты-носителя «Энергия». Продолжительность полёта составила 205 минут, корабль совершил два витка вокруг Земли, после чего произвёл посадку на аэродроме «Юбилейный» на Байконуре. Полёт прошёл без экипажа в автоматическом режиме с использованием бортового компьютера и бортового программного обеспечения, в отличие от шаттла, который традиционно совершает последнюю стадию посадки на ручном управлении (вход в атмосферу и торможение до скорости звука в обоих случаях полностью компьютеризованы). Данный факт — полёт космического аппарата в космос и спуск его на Землю в автоматическом режиме под управлением бортового компьютера — вошёл в книгу рекордов Гиннесса. Над акваторией Тихого океана «Буран» сопровождал корабль измерительного комплекса ВМФ СССР «Маршал Неделин» и научно-исследовательское судно АН СССР «Космонавт Георгий Добровольский».

В 1990 году работы по программе «Энергия-Буран» были приостановлены, а в 1993 году программа окончательно закрыта. Единственный летавший в космос (1988) «Буран» был разрушен в 2002 году при обрушении крыши монтажно-испытательного корпуса на Байконуре, в котором он хранился вместе с готовыми экземплярами ракеты-носителя «Энергия».

В ходе работы над проектом «Буран» было изготовлено несколько макетных образцов для динамических, электрических, аэродромных и прочих испытаний. После закрытия программы эти изделия остались на балансе различных НИИ и производственных объединений. Известно, например, о наличии макетных образцов у ракетно-космической корпорации «Энергия» и у НПО «Молния».

При внешнем сходстве с американским шаттлом орбитальный корабль «Буран» имел отличие — он мог совершать посадку полностью в автоматическом режиме с использованием бортового компьютера.

Изначально система автоматической посадки не предусматривала перехода на ручной режим управления. Однако пилоты-испытатели и космонавты потребовали у конструкторов включить ручной режим в систему управления посадкой[12]:

…система управления корабля «Буран» должна была выполнять автоматически все действия вплоть до остановки корабля после посадки. Участие лётчика в управлении не предусматривалось. (Позже, по нашему настоянию предусмотрели всё-таки резервный ручной режим управления на атмосферном участке полёта при возврате корабля.)

— С. А. Микоян

Ряд технических решений, полученных при создании «Бурана», до сих пор используются в российской и зарубежной ракетно-космической технике.[13]

Значительная часть технической информации о ходе полёта недоступна сегодняшнему исследователю, так как была записана на магнитных лентах для компьютеров БЭСМ-6, исправных экземпляров которых не сохранилось. Частично воссоздать ход исторического полёта можно по сохранившимся бумажным рулонам распечаток на АЦПУ-128 с выборками из данных бортовой и наземной телеметрии.[14]

Технические характеристики[править | править исходный текст]

  • Длина — 36,4 м,
  • Размах крыла — около 24 м,
  • Высота корабля, когда он стоит на шасси, — более 16 м,
  • Стартовая масса — 105 т.
  • Грузовой отсек вмещает полезный груз массой до 30 т при взлёте, до 20 т при посадке.

Образец «Бурана» ОК-ГЛИ (БТС 002) для тестирования в атмосфере. Авиа-космический салон МАКС, 1999

В носовой отсек вставлена герметичная цельносварная кабина для экипажа и людей для проведения работ на орбите (до 10 человек) и большей части аппаратуры для обеспечения полёта в составе ракетно-космического комплекса, автономного полёта на орбите, спуска и посадки. Объём кабины составляет свыше 70 м³.

Имеет треугольное крыло с двойной стреловидностью, а также аэродинамические органы управления, работающие при посадке после возвращения в плотные слои атмосферы — руль направленияэлевоны и аэродинамический щиток.

Две группы двигателей для маневрирования размещены в конце хвостового отсека и передней части корпуса. Выполняется манёвр возврата или выхода на одновитковую траекторию.

Впервые в практике двигателестроения была создана объединённая двигательная установка, включающая топливные баки окислителя и горючего со средствами заправки, термостатирования, наддува, забора жидкости в невесомости, аппаратурой системы управления и т. д. Бортовой комплекс управления состоит примерно из пятидесяти систем. При разработке программного обеспечения для космического корабля и наземных систем использовались технология структурного проектирования программ и язык универсальной ЭВМ, что позволило в короткие сроки разработать программные комплексы объёмом около 100 Мб. В случае отказов ракетных блоков первой и второй ступеней ракеты-носителя система управления орбитального корабля обеспечивает его аварийное возвращение на землю в автоматическом режиме.

Первостепенное значение для успешного преодоления гравитационно обусловленных термических и пневматических нагрузок, возникающих при прохождении корабля в плотных слоях атмосферы, имеет его защитная обшивка.[15] Ряд научно-исследовательских организаций страны получил задание по разработке огнеупорных материалов, соответствующих в характеристиках стойкости этим экстремальным техническим условиям.Институту химии силикатов (Санкт-Петербург), в числе других учреждений, выполнявшему эти работы, была доверена роль их координации, а общее руководство осуществлял выдающийся физико-химик М. М. Шульц.[16][17]

Отличия от «Спейс шаттл»[править | править исходный текст]

При общей внешней схожести проектов, имеются и существенные отличия.

Комплекс «Спейс шаттл» состоит из топливного бака (сигарообразный объект красного цвета по центру), двух твердотопливных ускорителей и самого космического челнока. За 6,6 с до момента старта (отрыва от стартового стола) запускаются три маршевых разгонных кислородно-водородных двигателя RS-25, размещённых на самом орбитальном ракетоплане (вторая ступень), а уже затем (в момент старта) — оба ускорителя (первая ступень), одновременно с подрывом крепёжных пироболтов. Из-за необходимости использования собственных разгонных двигателей шаттла, комплекс не может быть использован для вывода на орбиту иных аппаратов или грузов, даже меньшей в сравнении с шаттлом массы.

Шаттл садится с неработающими двигателями. Он не имеет возможности несколько раз заходить на посадку, поэтому предусмотрено несколько посадочных площадок на территории США.

«Буран»: название комплекса «Энергия — Буран». Комплекс состоял из первой ступени (четыре боковых блока с кислород-керосиновыми четырёхкамерными двигателями РД-170, многоразовые), второй ступени (сигарообразный объект белого цвета в центре; оснащена четырьмя кислород-водородными двигателями РД-0120) и возвращаемого космического аппарата «Буран». При старте запускались обе ступени. Отработав, отстыковывалась первая ступень (4 боковые ракеты) и довывод осуществлялся второй ступенью.

Данная схема универсальна, поскольку позволяла осуществлять вывод на орбиту не только МТКК «Буран», но и других полезных грузов массой до 100 тонн. «Буран» входил в атмосферу и начинал гасить скорость (угол входа примерно 30°, постепенно угол входа уменьшался). Первоначально для управляемого полёта в атмосфере «Буран» должен был оснащаться двумя ТРД, устанавливаемыми в зоне аэродинамической тени в основании киля. Однако к моменту первого (и единственного) старта данная система не была готова к полёту, поэтому после входа в атмосферу корабль управлялся только рулевыми поверхностями без использования тяги двигателей. Перед приземлением «Буран» осуществил гасящий скорость корректирующий манёвр (полёт по нисходящей восьмёрке), после чего шёл на посадку. В этом единственном полёте у «Бурана» была лишь одна попытка для захода на посадку. При посадке скорость составляла 300 км/ч, во время входа в атмосферу доходила до 25 скоростей звука (почти 30 тыс. км/ч).

В отличие от шаттлов, в «Буране» была предусмотрена система экстренного спасения экипажа. На малых высотах работала катапульта для первых двух пилотов; на достаточной высоте, в случае нештатной ситуации, «Буран» мог отделяться от ракеты-носителя и совершать экстренную посадку.

Главные конструкторы «Бурана» никогда не отрицали, что «Буран» был частично скопирован с американского спейс шаттла. В частности, генеральный конструктор Лозино-Лозинский высказался на вопрос о копировании следующим образом:[18]

Генеральный конструктор Глушко посчитал, что к тому времени было мало материалов, которые бы подтверждали и гарантировали успех, в то время, когда полёты «Шаттла» доказали, что подобная «Шаттлу» конфигурация работает успешно, и здесь риск при выборе конфигурации меньше. Поэтому, несмотря на больший полезный объём конфигурации «Спирали», было принято решение выполнять «Буран» по конфигурации, подобной конфигурации «Шаттла».

…Копирование, как это указано в предыдущем ответе, было, безусловно, совершенно сознательным и обоснованным в процессе тех конструкторских разработок, которые проводились, и в процессе которых было внесено, как уже было указано выше, много изменений и в конфигурацию, и в конструкцию. Основным политическим требованием было обеспечение габаритов отсека полезного груза, одинакового с отсеком полезного груза «Шаттла».

…отсутствие маршевых двигателей на «Буране» заметно меняло центровку, положение крыльев, конфигурацию наплыва, ну, и целый ряд других отличий.

Под отсутствующими маршевыми двигателями генеральный конструктор Лозино-Лозинский понимал именно разгонные двигатели. Но на «Буране» присутствовали маршевые доразгонные двигатели объединённой двигательной установки (ОДУ), обеспечивающие довыведение корабля на орбиту после отделения от ракеты-носителя, орбитальные манёвры и торможение перед сходом с орбиты.[19] У шаттла подобными доразгонными двигателями являлись двигатели системы орбитального маневрирования. После катастрофы космического корабля «Колумбия», и в особенности с закрытием программы «Спейс шаттл», в западных СМИ неоднократно высказывалось мнение о том, что американское космическое агентство NASA заинтересовано в возрождении комплекса «Энергия-Буран» и предполагает сделать соответствующий заказ России в ближайшее время. Между тем, по сообщению агентства «Интерфакс», директор ЦНИИМаш Г. Г. Райкунов заявил, что Россия может вернуться после 2018 года к этой программе и созданию ракет-носителей, способных выводить на орбиту груз до 24 тонн; испытания её будут начаты в 2015 году. В дальнейшем предполагается создание ракет, которые будут доставлять на орбиту грузы весом более 100 тонн. На отдалённое будущее имеются планы по разработке нового пилотируемого космического корабля и многоразовых ракет-носителей.[20][21][22]

Причины и следствия различий систем «Энергия — Буран» и «Спейс шаттл»[править | править исходный текст]

Первоначальный вариант ОС-120, появившийся в 1975 году в томе 1Б «Технические предложения» «Комплексной ракетно-космической программы», был практически полной копией американского спейс шаттла — в хвостовой части корабля размещались три маршевых кислородно-водородных двигателя (11Д122 разработки КБЭМ тягой по 250 т. с. и удельным импульсом 353 сек на земле и 455 сек в вакууме) с двумя выступающими мотогондолами для двигателей орбитального маневрирования.

Ключевым вопросом оказались двигатели, которые должны были быть по всем основным параметрам равными или превосходить характеристики бортовых двигателей американского орбитального корабля SSME и боковыетвердотопливные ускорители.

Двигатели, созданные в воронежском КБ химавтоматики, оказались по сравнению с американским аналогом:

  • тяжелее (3450 против 3117 кг),
  • немного больше по габаритам (диаметр и высота: 2420 и 4550 против 1630 и 4240 мм),
  • с несколько меньшей тягой (на уровне моря: 156 против 181 т. с.), хотя по удельному импульсу, характеризующему эффективность двигателя, несколько его превосходили.

При этом весьма существенной проблемой было обеспечение многоразового использования этих двигателей. Для примера, изначально создававшиеся как многоразовые двигатели спейс шаттла в итоге требовали такого большого объема весьма дорогостоящих межпусковых регламентных работ, что экономически «Шаттл» полностью не оправдал возлагавшихся надежд по снижению стоимости выведения килограмма груза на орбиту.

Известно, что для вывода на орбиту одинаковой полезной нагрузки с космодрома Байконур, по географическим причинам, нужно иметь большую тягу, чем с космодрома на мысе Канаверал. Для старта системы «Спейс шаттл» используются два твердотопливных ускорителя с тягой по 1280 т. с. каждый (самые мощные ракетные двигатели в истории), с суммарной тягой на уровне моря 2560 т. с., плюс общая тяга трёх двигателей SSME 570 т. с., что вместе создает тягу при отрыве от стартового стола 3130 т. с. Этого достаточно, чтобы с космодрома Канаверал вывести на орбиту полезную нагрузку до 110 тонн, включающую сам челнок (78 тонн), до 8 астронавтов (до 2 тонн) и до 29,5 тонн груза в грузовом отсеке. Соответственно, для вывода на орбиту 110 тонн полезной нагрузки с космодрома Байконур, при прочих равных условиях, требуется создать тягу при отрыве от стартового стола примерно на 15 % больше, то есть около 3600 т. с.

Советский орбитальный корабль ОС-120 (ОС означает «орбитальный самолёт») должен был иметь вес 120 тонн (добавить к весу американского челнока два турбореактивных двигателя для полётов в атмосфере и систему катапультирования двух пилотов в аварийной ситуации).[23] Простой расчёт показывает, что для вывода на орбиту полезной нагрузки в 120 тонн требуется тяга на стартовом столе более 4000 т. с.

В то же время получалось, что тяга маршевых двигателей орбитального корабля, если использовать аналогичную конфигурацию челнока с 3 двигателями, уступает американскому (465 т. с. против 570 т. с.), что совершенно недостаточно для второй ступени и довывода челнока на орбиту. Вместо трёх двигателей нужно было ставить 4 двигателя РД-0120, но в конструкции планера орбитального корабля запаса места и веса не было. Конструкторам пришлось резко снижать вес челнока.

Так родился проект орбитального корабля ОК-92, вес которого был снижен до 92 тонн за счёт отказа от размещения маршевых двигателей вместе с системой криогенных трубопроводов, их запирания при отделении внешнего бака и т. д. В результате проработки проекта, четыре (вместо трёх) двигателя РД-0120 были перенесены из хвостовой части фюзеляжа орбитального корабля в нижнюю часть топливного бака. Тем не менее, в отличие от Шаттла, неспособного совершать столь активные орбитальные маневры, Буран был оснащен двигателями маневрирования тягой 16 тонн, что позволяло ему при необходимости менять орбиту в широких пределах.

9 января 1976 года генеральный конструктор НПО «Энергия» Валентин Глушко утвердил «Техническую справку», содержащую сравнительный анализ нового варианта корабля «ОК-92».

После выхода постановления № 132-51, разработку планера орбитера, средств воздушной транспортировки элементов МКС и системы автоматической посадки поручили специально организованному НПО «Молния», которое возглавил Глеб Евгеньевич Лозино-Лозинский.

Изменения коснулись и боковых ускорителей. В СССР не имелось опыта проектирования, необходимой технологии и оборудования для производства таких больших и мощных твердотопливных ускорителей, которые используются в системе спейс шаттл и обеспечивают 83 % тяги на старте. Более суровый климат требовал более сложных химических веществ для работы в более широком температурном диапазоне, твердотопливные ускорители создавали опасные вибрации, не допускали управления тягой и разрушали озоновый слой атмосферы своим выхлопом. Кроме этого, двигатели на твердом топливе уступают по удельной эффективности жидкостным — а нам требовалось в связи с географическим положением космодрома Байконур для вывода равной по ТЗ Шаттлу полезной нагрузки большая эффективность. Конструкторы НПО «Энергия» приняли решение использовать самый мощный из имеющихся ЖРД — двигатель, созданный под руководством Глушко, четырёхкамерный РД-170, который мог развивать тягу (после доработки и модернизации) 740 т. с. Однако пришлось вместо двух боковых ускорителей по 1280 т. с. использовать четыре по 740. Суммарная тяга боковых ускорителей вместе с двигателями второй ступени РД-0120 при отрыве от стартового стола достигла 3425 т. с., что примерно равно стартовой тяге системы «Сатурн-5» с кораблями «Аполлон» (3500 т. с.).

Возможность повторного использования боковых ускорителей была ультимативным требованием заказчика — ЦК КПСС и министерства обороны в лице Д. Ф. Устинова. Официально считалось, что боковые ускорители являются многоразовыми, однако в тех двух полётах «Энергии», которые имели место, задача сохранения боковых ускорителей даже не ставилась. Американские ускорители опускаются на парашютах в океан, что обеспечивает довольно «мягкую» посадку, щадящую двигатели и корпуса ускорителей. К сожалению, в условиях старта из казахстанской степи нет шансов провести «приводнение» ускорителей, а парашютная посадка в степи недостаточно мягкая для сохранения двигателей и корпусов ракет. Планирующая, либо парашютная с пороховыми двигателями посадка хоть и проектировались, но не была реализована в первых двух испытательных полетах, а дальнейшие разработки в этом направлении, включая спасение блоков как первой, так и второй ступени с помощью крыльев, не были осуществлены вследствие закрытия программы.

Изменения, ставшие отличиями системы «Энергия — Буран» от системы «Спейс шаттл», имели следующие результаты:

  • в системе «Энергия — Буран» многоразовым элементом в первом полете был лишь сам орбитальный корабль, а блоки первой ступени и центральный блок утрачивались в процессе запуска.[24]
  • с другой стороны, была создана универсальная транспортная космическая система, позволявшая, в отличие от американцев, выводить в космос не только «Буран», но и произвольные тяжелые грузы массой до 100 тонн, в то время у США челнок является неотъемлемой частью транспортной системы и груз ограничен 29,5 тоннами, причем из-за особенностей центровки орбитального корабля ни одного полета с полной загрузкой так и не было совершено. В США существовали планы создания одноразовой чисто грузовой системы на базе Шаттла (Shuttle-C), но они не были реализованы.

Перечень макетов[править | править исходный текст]

Транспортировка БТС-002 в музей техники Шпайера

«Буран» (БТС-001) в парке Горького в Москве

  • БТС-001 ОК-МЛ-1 (изделие 0.01) использовался для отработки воздушной транспортировки орбитального комплекса. В 1993 году полноразмерный макет был передан в лизинг обществу «Космос — Земля» (президент — космонавт Герман Титов). Он установлен на Пушкинской набережной Москвы-реки в Центральном парке культуры и отдыха Москвы и по состоянию на декабрь 2008 года в нём организован научно-познавательный аттракцион.
  • ОК-КС (изделие 0.03) является полноразмерным комплексным стендом. Использовался для отработки воздушной транспортировки, комплексной отработки ПО, электро-радиотехнические испытания систем и оборудования. До 2012 года находился в корпусе контрольно-испытательной станции РКК «Энергия», город Королёв. Был переремещен на прилегающую к корпусу центра территорию, где сейчас проходит консервацию. После консервации будет установлен на специально подготовленной площадке территории РКК «Энергия»[29].
  • ОК-МЛ-2 (изделие 0.04) применялся для габаритных и весовых примерочных испытаний.
  • ОК-ТВА (изделие 0.05) применялся для тепло-вибро-прочностных испытаний. Находится в ЦАГИ.
  • ОК-ТВИ (изделие 0.06) являлся моделью для тепло-вакуумных испытаний. Располагается в НИИХимМаш, г. Пересвет Московской области.

Макет кабины «Бурана» (изделие 0.08) на территории Клинической больницы № 83 ФМБА на Ореховом бульваре в Москве

  • ОК-МТ (изделие 0.15) использовался для отработки предстартовых операций (заправка корабля, примерочно-стыковочных работ и др.). В настоящее время находится на площадке Байконура 112А, (45°55′10″ с. ш. 63°18′36″ в. д. (G) (O)) в сооружении 80. Является собственностью Казахстана.
  • 8М (изделие 0.08) — макет представляет собой только модель кабины с аппаратной начинкой. Использовался для отработки надежности катапультируемых кресел. После окончания работ находился на территории 29-й клинической больницы в Москве, затем был перевезён в подмосковный Центр подготовки космонавтов. В настоящее время находится на территории 83-й клинической больницы ФМБА (с 2011 — Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий ФМБА).

Перечень изделий[править | править исходный текст]

К моменту закрытия программы (начало 1990-х годов) было построено или велось строительство пяти лётных экземпляров корабля «Буран»:

Второй летный корабль «Буран» 1.02 в Музее космонавтики на космодроме Байконур

Буран 2.01 в ЛИИ им. Громова, август 2011 года

Экипаж[править | править исходный текст]

В 1984 — в ЛИИ им. М. М. Громова были сформированы экипажи для испытания аналога «Бурана» — БТС-02 которые проводились вплоть до 1988 г. Эти же экипажи планировались и для 1-го пилотируемого полёта «Бурана».

Основной экипаж

Волк, Игорь Петрович — командир

Станкявичюс, Римантас Антанас — 2-й пилот, погиб в авиакатастрофе 9 сентября 1990

Дублирующий Экипаж

Левченко, Анатолий Семёнович — командир, умер от опухоли головного мозга, 6 августа 1988

Щукин, Александр Владимирович — 2-й пилот, разбился во время подготовки к празднику 18 августа 1988